Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Chem Toxicol ; 46(6): 1242-1254, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36606318

RESUMO

Phytoestrogens are xenoestrogens found in plants with a myriad of health benefits. However, various studies reported the genotoxic effects of these substances. Thus, we reviewed in vitro and in vivo studies published in PubMed, Scopus, and Web of Science to evaluate the genotoxic and the genoprotective potential of phytoestrogens. Only studies written in English and intended to study commercially available phytoestrogens were included. The screening was performed manually. Moreover, the underlying mechanism of action of phytoestrogens was described. Around half of those studies (43%) reported genoprotective results. However, several studies revealed positive results for genotoxicity with specific model organisms and with dose/concentration dependence. The assessment of the selected articles showed substantial differences in the used concentrations and a biphasic response was recorded in some phytoestrogens. As far as we know, this is the first study to assess the genotoxic and genoprotective effects of phytoestrogens systematically.


Assuntos
Dano ao DNA , Fitoestrógenos , Fitoestrógenos/farmacologia
2.
Nanotoxicology ; 16(3): 393-407, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35818303

RESUMO

The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.


Assuntos
Cério , Nanopartículas Metálicas , Nanopartículas , Animais , Proteínas de Ciclo Celular , Cério/toxicidade , Ensaio Cometa , Proteínas do Citoesqueleto , DNA , Dano ao DNA , Drosophila , Humanos , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Óxidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...